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<= Spatial scales in soil characteristics

ilama

m Organization, in the minor scales (Bléschl and Sivapalan, 1995)

> General pattern can be explained deterministically by a few
number of factors

> It is possible to delineate
Cartographic Units, but

= Subjective
= Scale dependent

> With modal values
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" JEE
<= Spatial scales in soil characteristics

ilama

m Randomness, in the larger scales
> Detailed structure is due to a large number of factors
» Stochastic models with spatial dependence structure
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E.g.: Vertical saturated permeability at
each cell in one Cartographic Unit
of Rambla del Poyo, Spain
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<A Problems with heterogeneity

ilama

m Scale effects when averaging non linear processes:

m Spatial aggregation

MW 1}*WH1 i

intervalos de 10 min
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== Effective parameters

m Scale effects when averaging non linear processes:

The mean process is not the result with the mean
parameter and/or input

m Effective parameter: parameter value which reproduces
the mean process at the mesoscale, but:

> Different to the spatial mean of the point scale values
= They can lose their physical meaning at the meso or macroscale

» Non-stationary
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< Non-linear processes
CS ) YT m Static Storage
. N Water excedence: X, = Max[0; X, @+ H. |
l Hu[ StaticStOragj]\r Caplllary Inflltratlon Dl - xl B X 2
- Evapotranspiration: Y, =Min[ETP-A;H, |
X l - | m Surface Storage
Swfacesmmgejvl—i Gravitational infiltration: X, = I'V'Iin[Xz;At
X
() — Gravitational Storage
Xl v i Percolation: X4 :Min[X3;At
Storage \r—\
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> PDF of H, [Beta(a,b)]: = @) Ho* (1-Ho )
Je
> PDF of k.and k. [LN(U.O)]: f=— ¢

a

3
> Exponential spatial autocorrelation: p(h)=e( |

m Sampling algorithm (Pinder and Celia, 2006):
> Latin Hypercube Sampling
» Cholesky Factorization

2nd SCARCE ANNUAL CONFERENCE: Integrated modelling and monitoring at different river basin scales 7



iiama
1 \’\L_‘. I I I . - .
. ! \\ 05%\ 0_5\ Statistics of the random fields
0 - 00— 0
A) ’ h(m) ’ ’ )h.{n}_]o N ¢ 7!??1:.} v ’ hs{?n] 100 H (Hu ) H (ks) H (kp) CV:G/]J
| [ oL 7%
2 5 ol i T o %t;\ ‘ 0.5
q" 10 60 B I
: ' ] jg' 1 so[iit i N 70 20 2 1
2 4 STEETINT 0 40 20 40 60 80100 100 60 6 1.5
E m = . 3
2 25 3 3 4 5 2 4 6 0 2 4 6 8
: ' ra=25
Spatial scales 18 Correlation lengths: a ,
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S1 _ , realizations
Size Notation
[m?] [m?]
Ix1 5x5 S2a 500
I x1 15x15 S2b 500
I x1 45 x 45 S2¢ 2500
I x1 100x 100 S2d 5000
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“ES Scale effect: aggregation

m Aggregation:

>

Excedence X2[52]= X,
=1
[S2]=) X,
i=1

m Mesoscale effective parameters (inverse solution):

>

Gravitational infiltration X

W

Flow aggregation

H, [S2] = X, [52]+H,[52]- X, [S2]

[S2 ><2[S2]-(At)_1 X,[S2]= X,[S2]
X3[S 2]-(At)_1 X3[S 2] > Xz[S 2] (similar expression for k)
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m H,, k;and k, depend strongly on state variables and
Input and are sensible to microscale heterogeneity:
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» Some sensitivity to CV
» Low sensitivity to the spatial dependence structure
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<= Scali ti
_©
: caling equations
1lama
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< Scaling equations

ilama

m The relationship between the
microscale heterogeneity and the
parameters of the scaling equations
was estimated through multilayer
perceptron neural networks:

w2-:-
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CH(ELST]}

Threshold Threshold Cvikfst]) Threshold Threshold

w, a
L/ Lia
) Output ) Output s
3
Ny
RNA1 Hidden layer Qutput RNA3 Hidden layer Outprt
Transfer funetion | Hyperbolic tangent | Linear Transfer function IIyperbolic tangent | Linear
-1.3787 -0.6915 !
Weights 0.9077 Weights -L.2067 S 1] [5 1]
Threshold -0.4837 0.2366 Threshold 0.6271 0.1871 1 2 3 4 0 2 4 6 7
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Study site

ilama

m Goodwin Creek experimental basin

Basin Area: 21.6 km?2
Ephemeral river
Hortonian runoff?

16 raingauge stations (temporal
resolution of 5 minutes)

» 6 flowgauge stations (calibration at
the outlet station)

DEM: 30x30 m?

> Five flood events were selected in Ve T
Liaaliaal Goodwin Creek Watershed
the period of 1981 to 1983. peak
flows from 38 to 106 m3/s

Tennessee

YV V VYV V

® Stream-gaging stations

—— Channels
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<=2 Basic hydrological model

RAINFALL SNOWFALL
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<i TETIS spatial information

iilama

m Derived from the DEM:
> Flow direction
> Slope
> Flow accumulation

{
L

/I
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<i TETIS spatial information

ilama

m Hydrological soil parameters: A
> Static maximum capacity
(interception + capillary storage)
> Upper soil permeability
> Substrate permeability

ool [ [IT111111]
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<-—  Hydrological automatic calibration

ilama

m Calibration of parameter maps correction factors & initial
conditions

m Objective function: RMSE of the outlet disharges
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Hydrological

validation

Hydrograph - Validation Event 3 - Station Q001
Correction Factors calibrated in station Q001

Hydrograph - Calibration Event - Station Q004
Correction Factors calibrated in station Q001
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- Modelling scenarios

m 3 information scales and with or w/o scaling equations

Notation Scenarios

S1 Maps with resolution of 30x30 m?, w/o scaling equations

Sl+se Maps with resolution of 30x30 m?, with scaling equations

S2 Maps with resolution of 1740x1740 m?, w/o scaling equations

S2+se Maps with resolution of 1740x1740 m?, with scaling equations

S3 Maps with the average for the whole catchment, w/o scaling equations
S3+se Maps with the average for the whole catchment, with scaling equations

+ 2 + S3

Hu

Value

. High : 161.002

B Low : 62.1050 I 1160 (mm)
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- ol Results: spatial validation
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Peak flow error (%)
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<% Results: spatial-temporal validation

ilama
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<=2 Results:

performance vs. sub-basin area

ilama
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< Conclusions

m Non-linearities + parameter heterogeneity and/or input variability =>
non-stationary effective parameters

m It is important the sub-grid variability representation in hydrological
modeling.

m Particularly, the use of scaling equations implies:
> For all information scenarios, a significant model performance
improvement in validations at internal flowgauges and for the smallest
storm events.
> A better performance of S1+se and S2+se in comparison to the
reference model S1.
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