

Instituto de Ingeniería del
Agua y Medio Ambiente

UNIVERSIDAD
POLITECNICA
DE VALENCIA

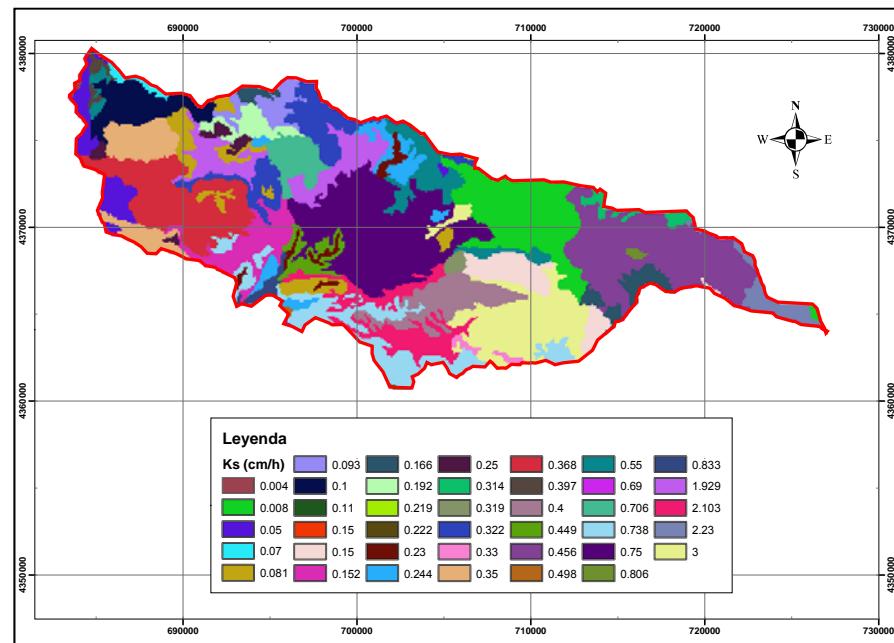
Application of scaling equations to deal with the spatial aggregation effect on watershed hydrological modelling

M. Barrios and F. Francés

Universitat Politècnica de València
Instituto de Ingeniería del Agua y Medio Ambiente
Research Group in Hydrological and Environmental Modelling
<http://lluvia.dihma.upv.es>

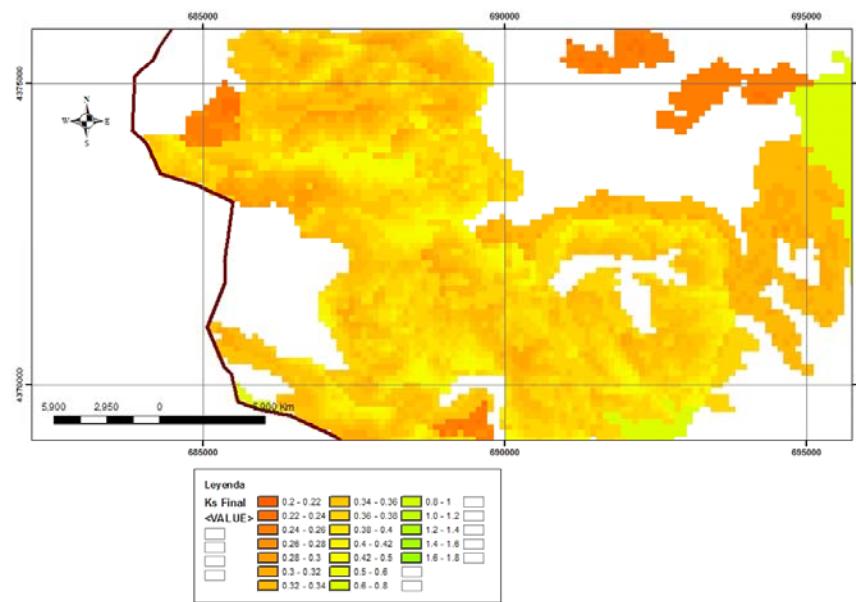
- **Organization**, in the minor scales (Blöschl and Sivapalan, 1995)
 - General pattern can be explained deterministically by a few number of factors
 - It is possible to delineate Cartographic Units, but
 - Subjective
 - Scale dependent
 - With modal values

E.g.: Modal values of vertical saturated permeability in Rambla del Poyo, Spain



Spatial scales in soil characteristics

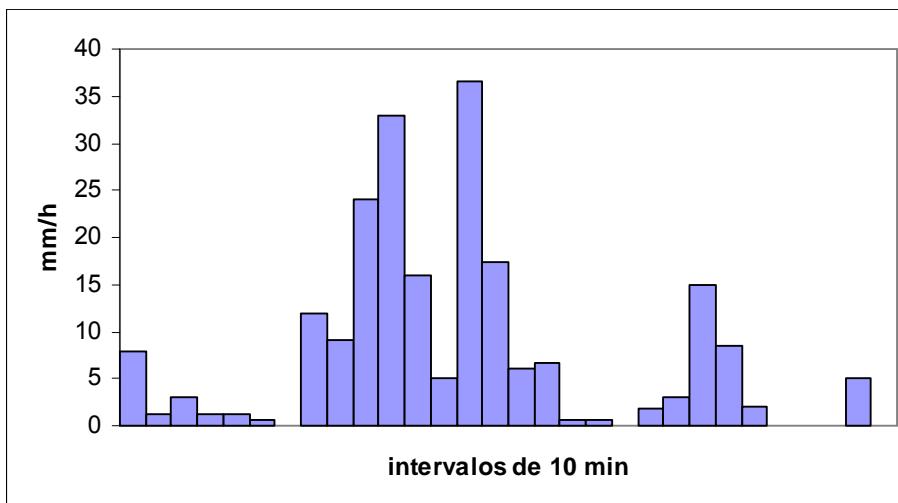
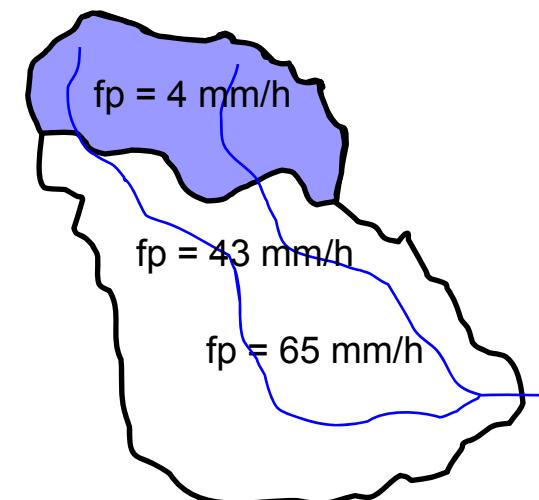
- **Randomness**, in the larger scales
 - Detailed structure is due to a large number of factors
 - Stochastic models with spatial dependence structure



E.g.: Vertical saturated permeability at each cell in one Cartographic Unit of Rambla del Poyo, Spain

Problems with heterogeneity

- Scale effects when averaging non linear processes:
- Spatial aggregation



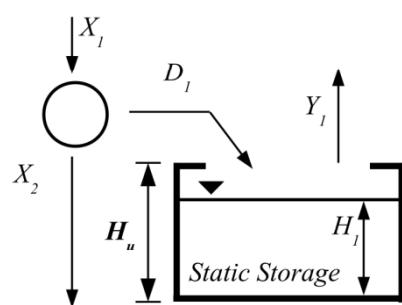
Effective parameters

- Scale effects when averaging non linear processes:

The mean process is not the result with the mean parameter and/or input

- **Effective parameter**: parameter value which reproduces the mean process at the mesoscale, but:
 - Different to the spatial mean of the point scale values
 - They can lose their physical meaning at the meso or macroscale
 - **Non-stationary**

Non-linear processes



■ Static Storage

Water exceedence:

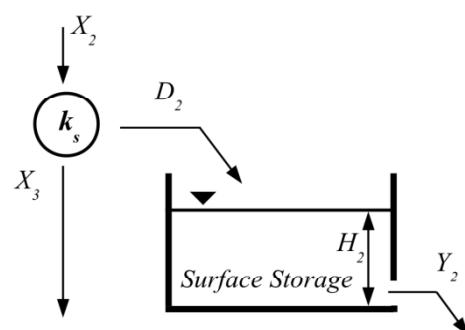
$$X_2 = \text{Max}[0; X_1 - H_u + H_1]$$

Capillary infiltration:

$$D_1 = X_1 - X_2$$

Evapotranspiration:

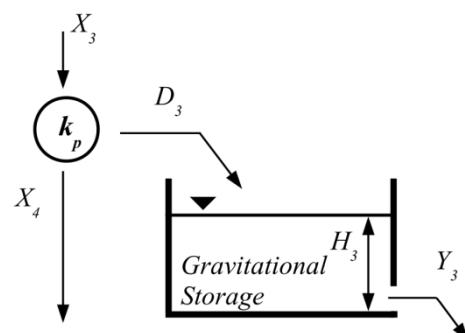
$$Y_1 = \text{Min}[ETP \cdot \lambda; H_1]$$



■ Surface Storage

Gravitational infiltration:

$$X_3 = \text{Min}[X_2; \Delta t \cdot k_s]$$



Gravitational Storage

Percolation:

$$X_4 = \text{Min}[X_3; \Delta t \cdot k_p]$$

- Generation of random parameter fields (H_u , k_s and k_p)

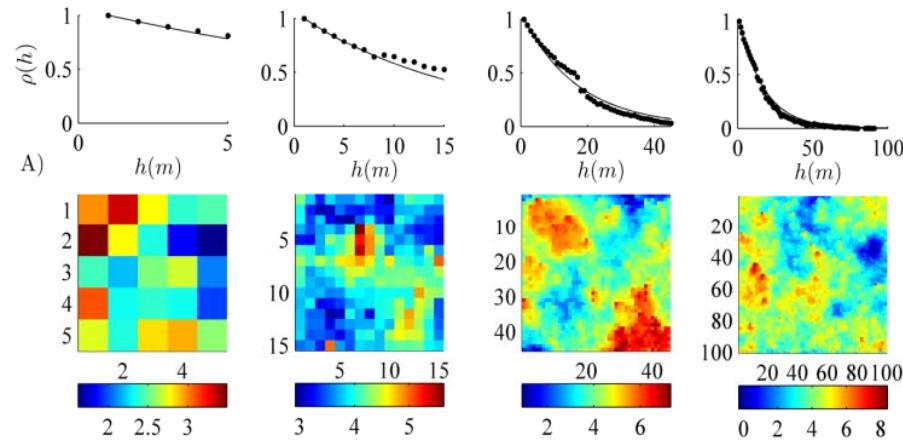
- PDF of H_u [Beta(a,b)]:
$$f = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} H_u^{a-1} (1-H_u)^{b-1}$$

- PDF of k_s and k_p [LN(μ, σ)]:
$$f = \frac{1}{k_s \sigma \sqrt{2\pi}} e^{\left[\frac{-(\ln k_s - \mu)^2}{2\sigma^2} \right]}$$

- Exponential spatial autocorrelation:
$$\rho(h) = e^{\left(\frac{-3h}{a} \right)}$$

- Sampling algorithm (Pinder and Celia, 2006):
 - Latin Hypercube Sampling
 - Cholesky Factorization

Synthetic heterogeneity



Statistics of the random fields

$\mu (H_u)$	$\mu (k_s)$	$\mu (k_p)$	$CV = \sigma / \mu$
			0.5
70	20	2	1
100	60	6	1.5
			2

Spatial scales

Microscale S1	Mesoscale S2		# of realizations
	Size	Notation	
[m ²]	[m ²]		
1 x 1	5 x 5	S2a	500
1 x 1	15 x 15	S2b	500
1 x 1	45 x 45	S2c	2500
1 x 1	100 x 100	S2d	5000

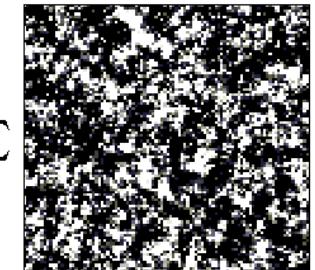
18 Correlation lengths: $a = 2.5, 5, 10, \dots, 50, 75, 100, 150, 250, 500, 2500$ and 5000 m

Scale effect: aggregation

- Aggregation:

Excedence $X_2[S2] = \sum_{i=1}^n X_{2i}$

Gravitational infiltration $X_3[S2] = \sum_{i=1}^n X_{3i}$



Flow aggregation

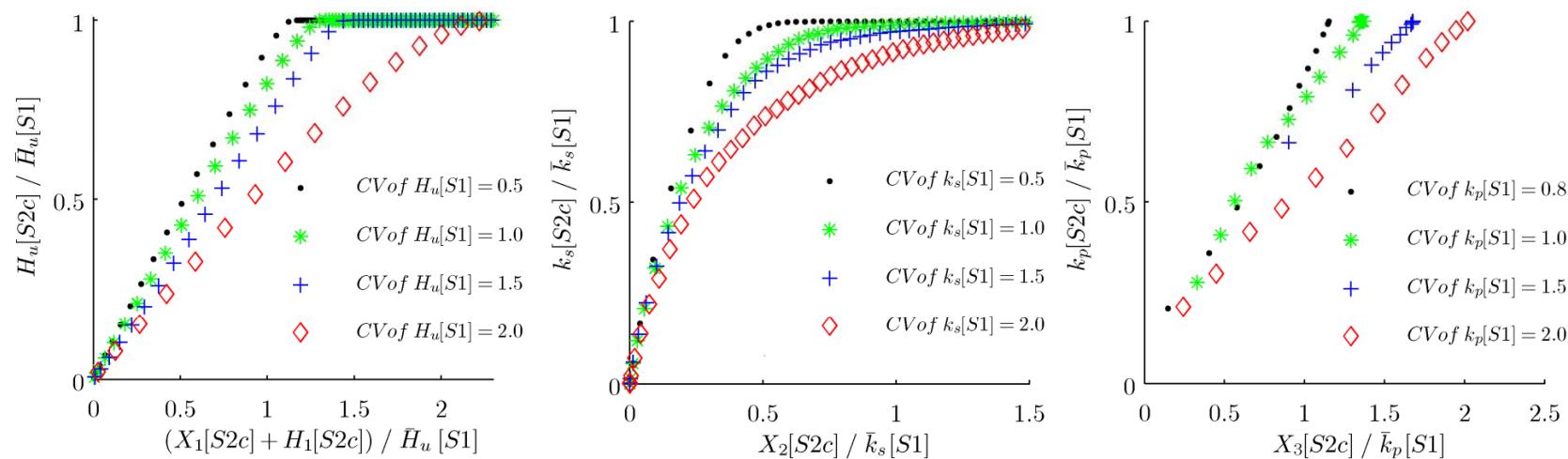
- Mesoscale effective parameters (inverse solution):

$$H_u[S2]_t = X_1[S2] + H_1[S2] - X_2[S2]$$

$$k_s[S2]_t = \begin{cases} X_2[S2] \cdot (\Delta t)^{-1} & X_3[S2] = X_2[S2] \\ X_3[S2] \cdot (\Delta t)^{-1} & X_3[S2] > X_2[S2] \end{cases} \text{ (similar expression for } k_p\text{)}$$

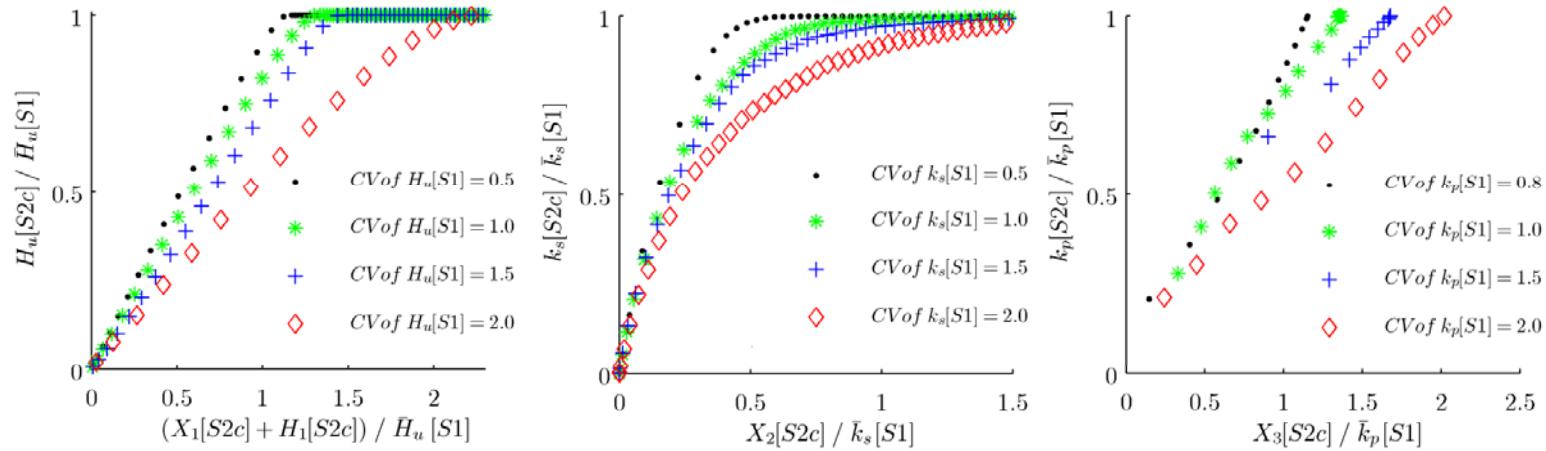
Mesoscale effective parameters

- H_u , k_s and k_p depend strongly on state variables and input and are sensible to microscale heterogeneity:



- Some sensitivity to CV
- Low sensitivity to the spatial dependence structure

Scaling equations



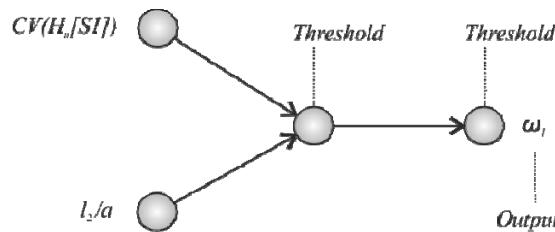
$$H_u[S2]_t = (X_{1t} + H_{1t-1}) \left\{ 1 - \Phi \left[\frac{\ln(X_{1t} + H_{1t-1} - \omega_1)}{\omega_2} \right] \right\} + \bar{H}_u[S1] \left\{ \Phi \left[\frac{\ln(X_{1t} + H_{1t-1} - \omega_1)}{\omega_2} \right] - 0.93\omega_1^{-0.47}\omega_2 \right\}$$

$$k_s[S2]_t = \bar{k}_s[S1] \left\{ 1 - \varepsilon(X_{2t}[S2], \alpha) \right\} - X_{2t}[S2] \left\{ \varepsilon(X_{2t}[S2], \alpha) \right\}$$

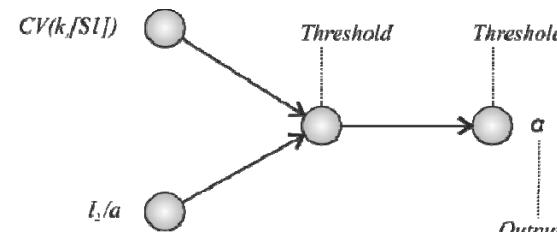
$$k_p[S2]_t = \bar{k}_p[S1] \left\{ 1 - \varepsilon(X_{3t}[S2], \beta) \right\} - X_{3t}[S2] \left\{ \varepsilon(X_{3t}[S2], \beta) \right\}$$

Scaling equations

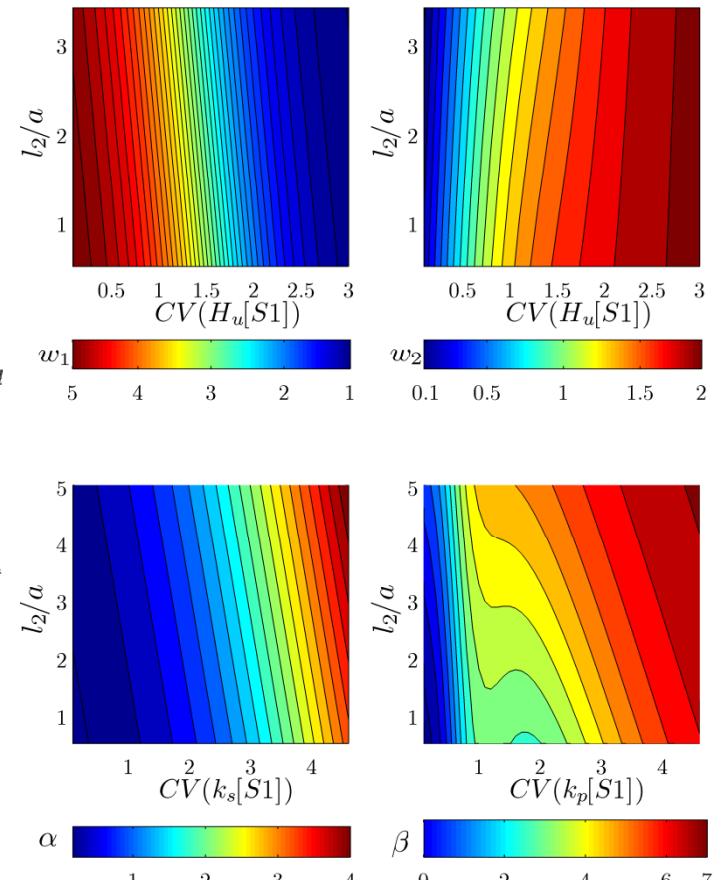
- The relationship between the microscale heterogeneity and the parameters of the scaling equations was estimated through multilayer perceptron neural networks:



RNA1	Hidden layer	Output
Transfer function	Hyperbolic tangent	Linear
Weights	-1.3787	0.9077
	-0.2293	
Threshold	-0.4837	0.2366



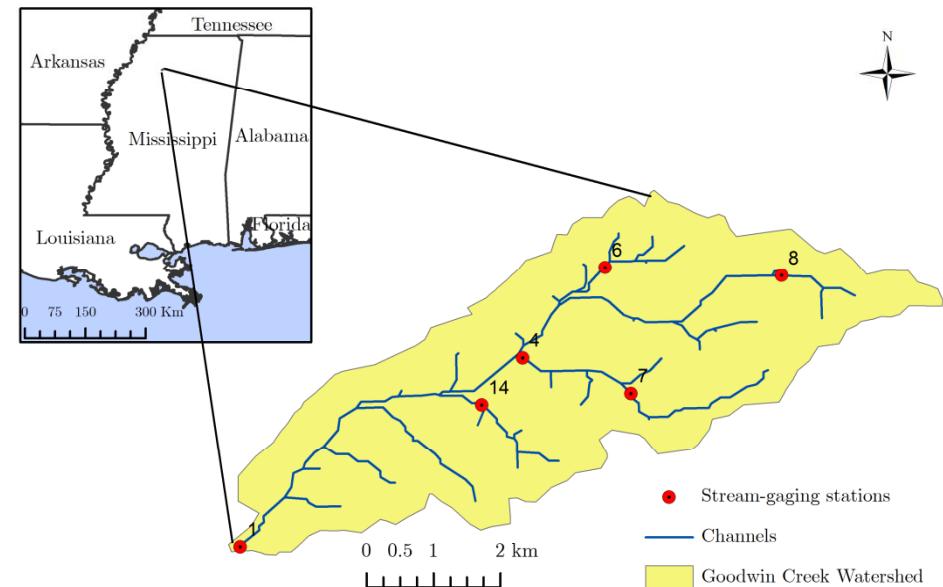
RNA3	Hidden layer	Output
Transfer function	Hyperbolic tangent	Linear
Weights	-0.6915	-1.2067
	-0.2664	
Threshold	0.6271	0.1874



Study site

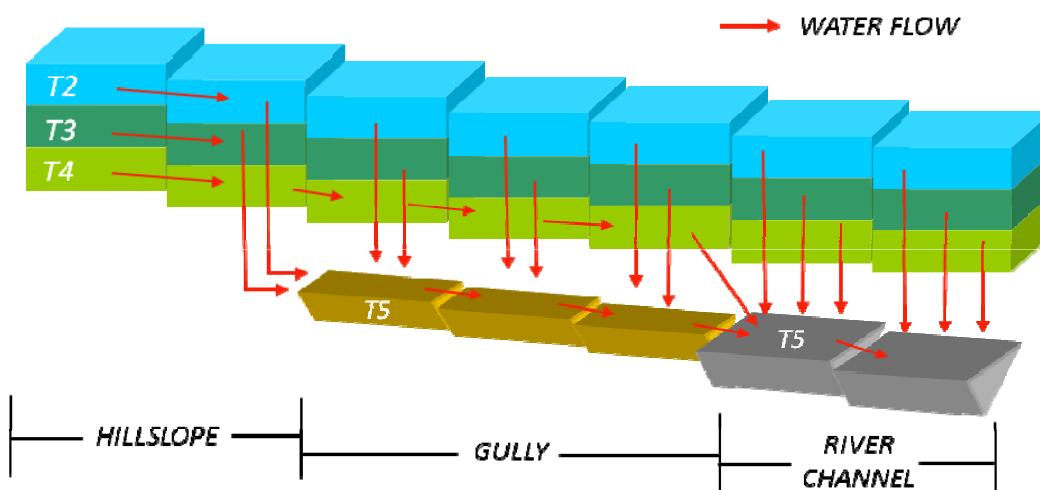
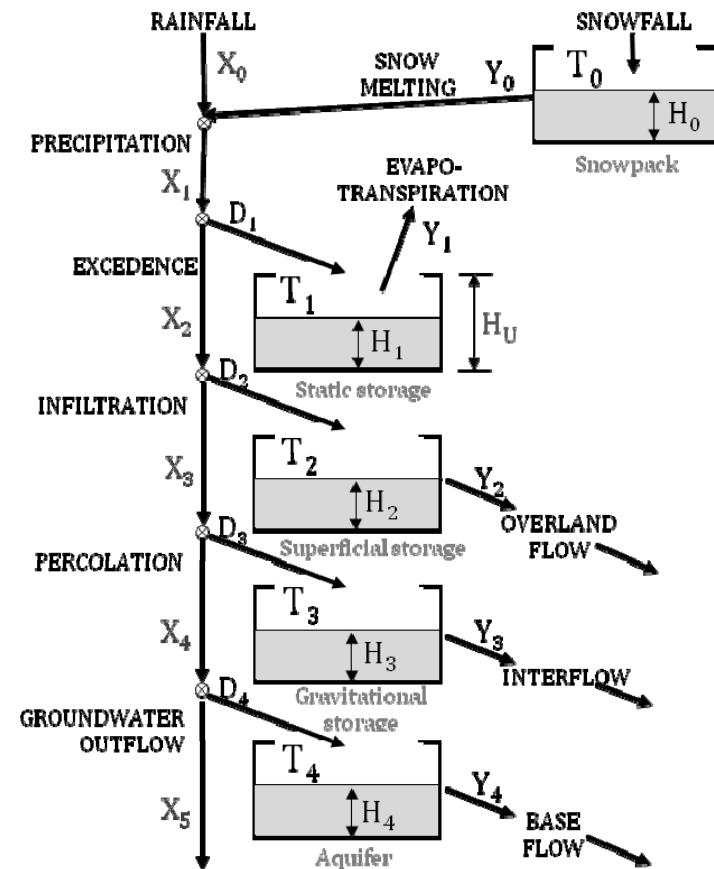
■ Goodwin Creek experimental basin

- Basin Area: 21.6 km²
- Ephemeral river
- Hortonian runoff?
- 16 raingauge stations (temporal resolution of 5 minutes)
- 6 flowgauge stations (calibration at the outlet station)
- DEM: 30x30 m²
- Five flood events were selected in the period of 1981 to 1983: peak flows from 38 to 106 m³/s



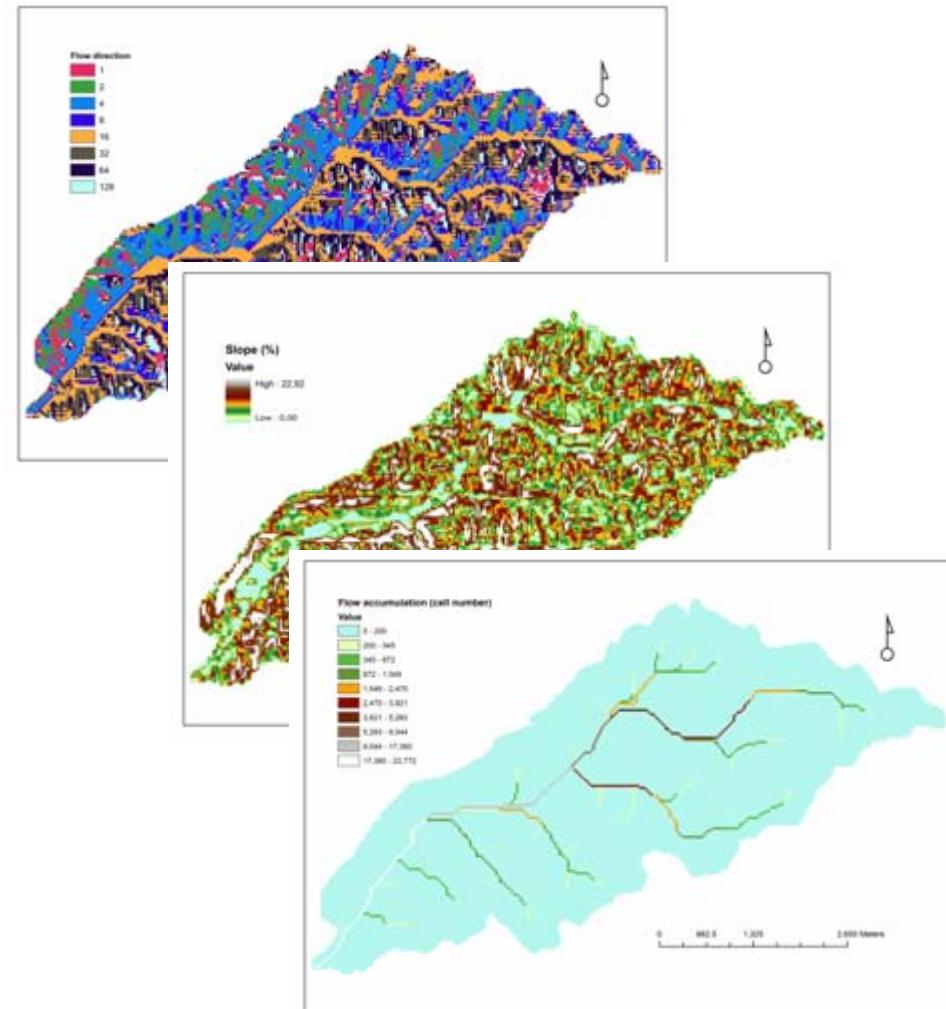
Basic hydrological model

■ TETIS model



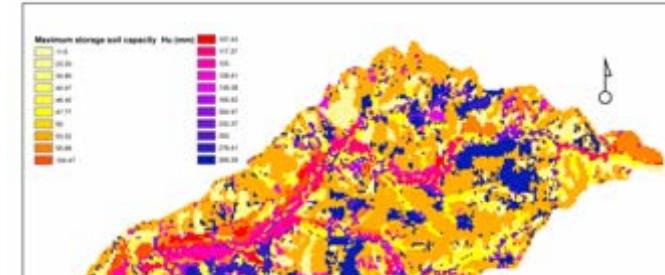
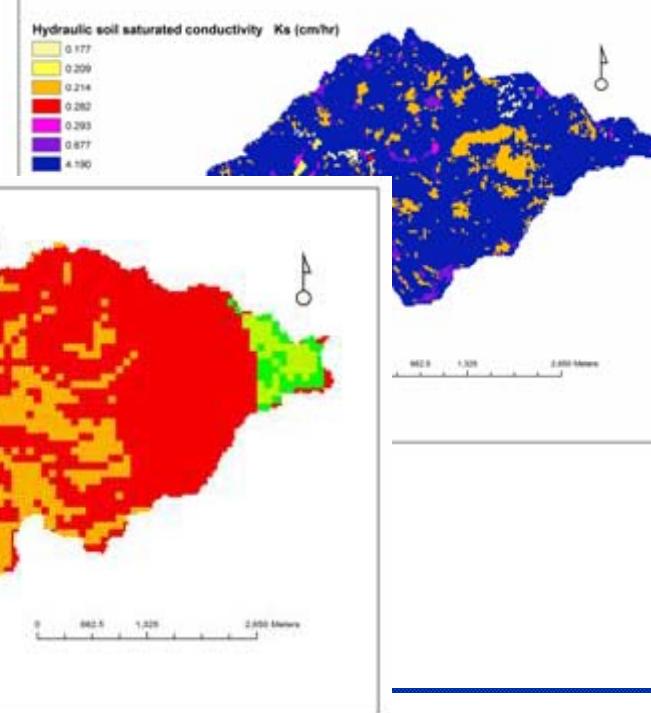
TETIS spatial information

- Derived from the DEM:
 - Flow direction
 - Slope
 - Flow accumulation



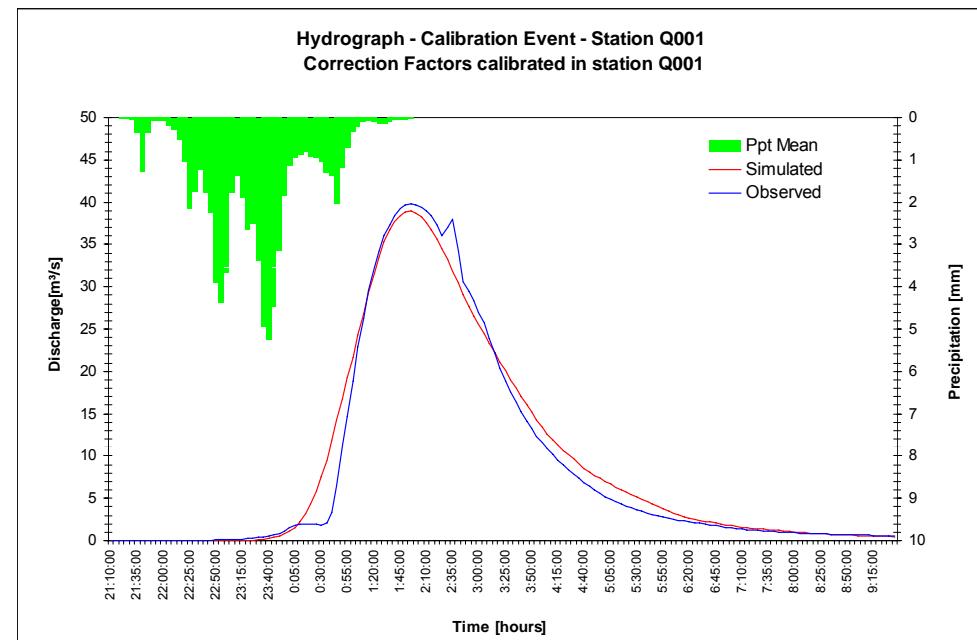
TETIS spatial information

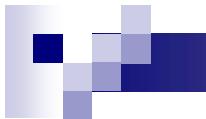
- Hydrological soil parameters:
 - Static maximum capacity (interception + capillary storage)
 - Upper soil permeability
 - Substrate permeability



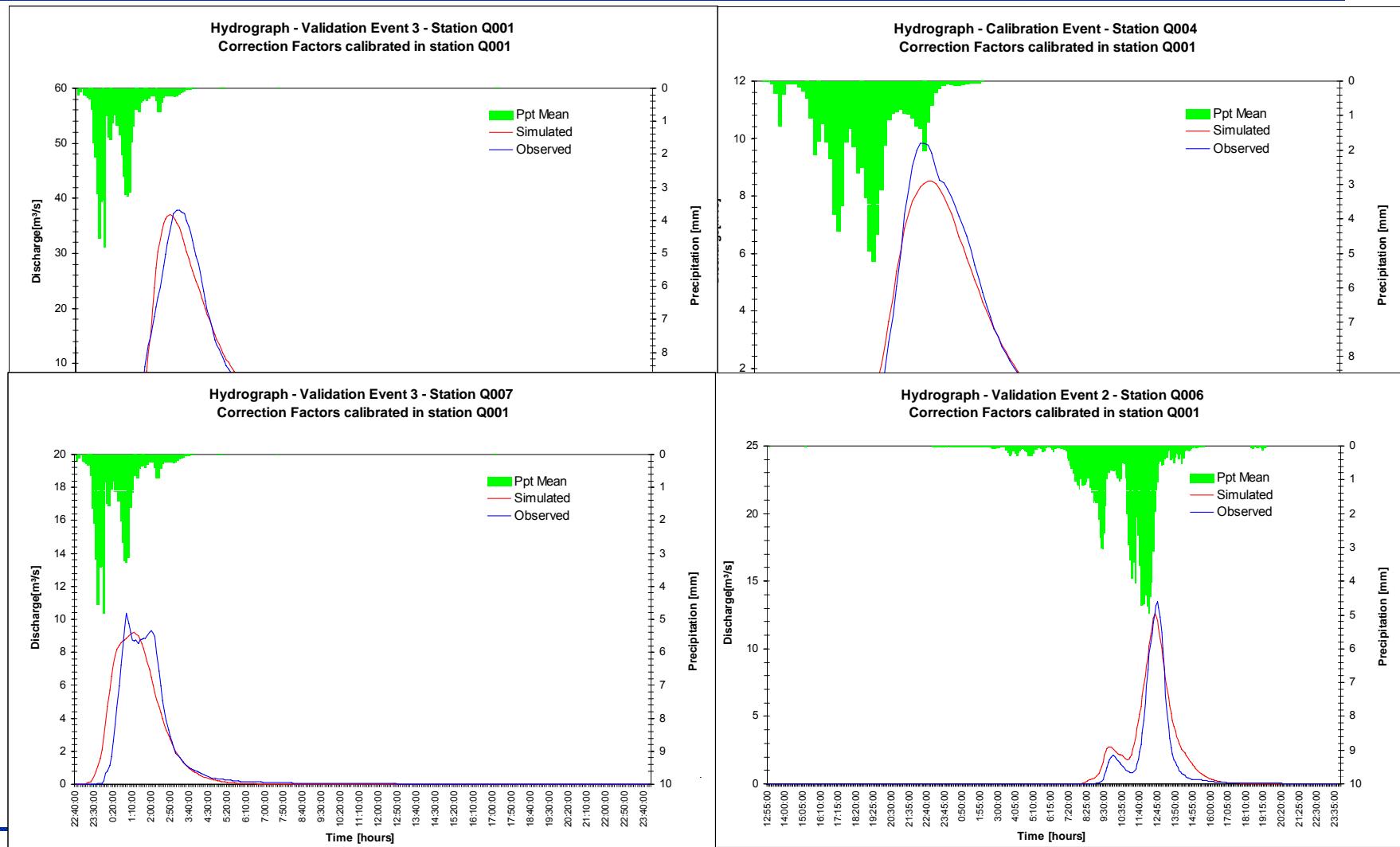
- Calibration of parameter maps correction factors & initial conditions
- Objective function: RMSE of the outlet discharges

- Streamflow:
basically overland flow!!





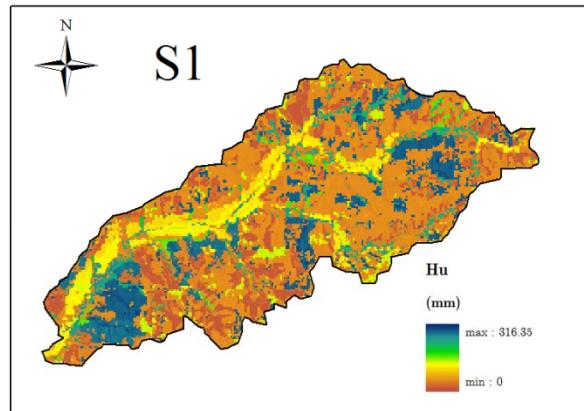
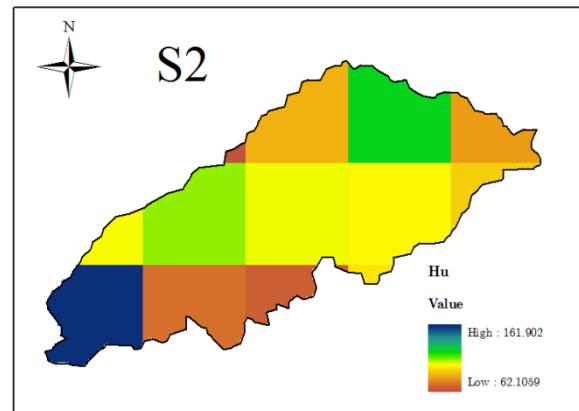
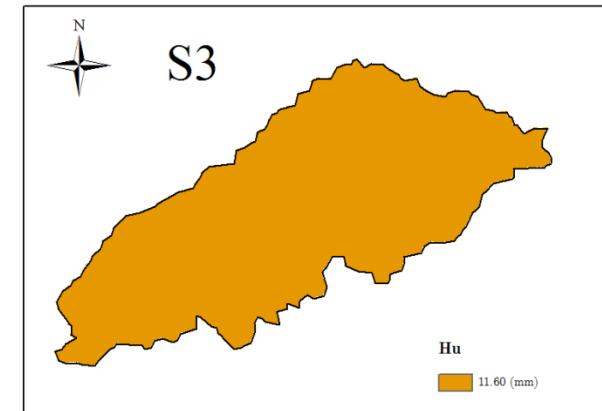
Hydrological validation

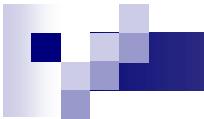


Modelling scenarios

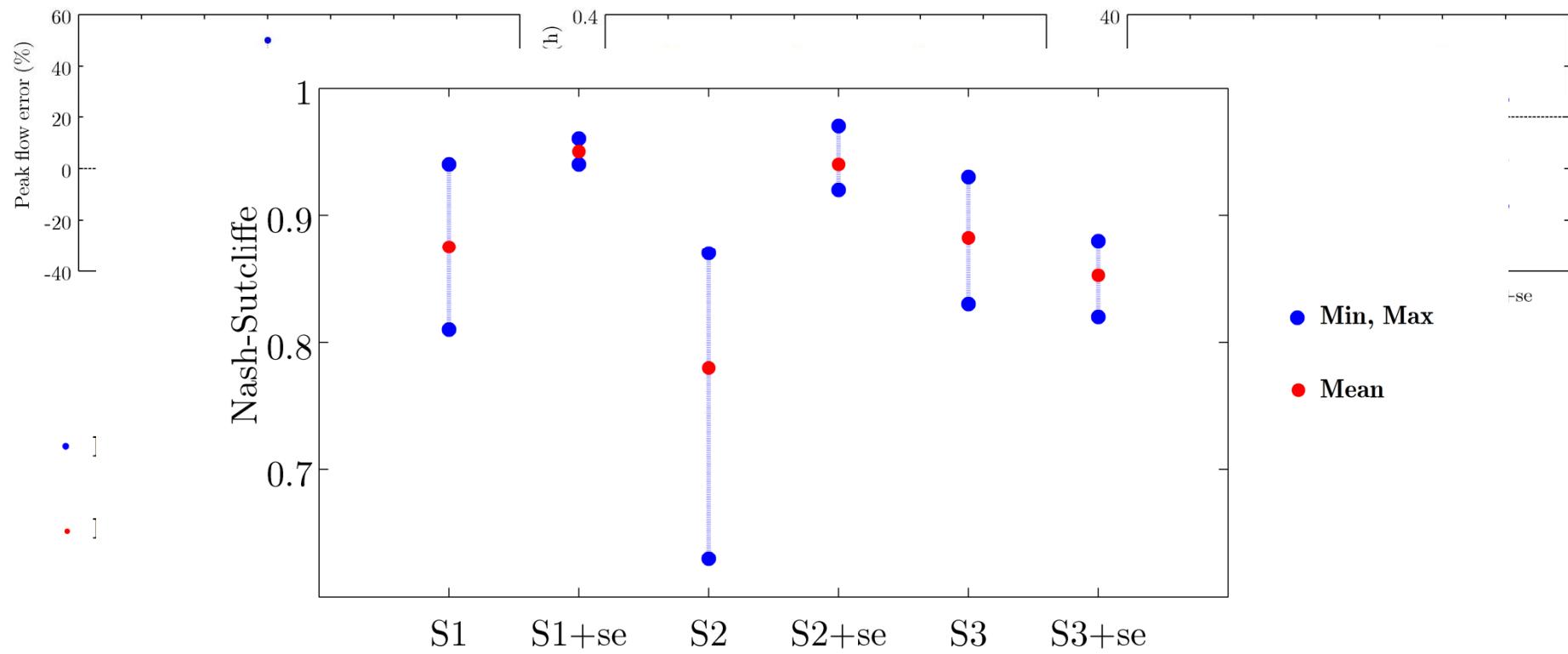
- 3 information scales and with or w/o scaling equations

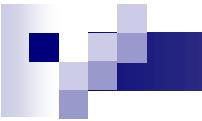
Notation	Scenarios
S1	Maps with resolution of 30x30 m² , w/o scaling equations
S1+se	Maps with resolution of 30x30 m² , with scaling equations
S2	Maps with resolution of 1740x1740 m² , w/o scaling equations
S2+se	Maps with resolution of 1740x1740 m² , with scaling equations
S3	Maps with the average for the whole catchment, w/o scaling equations
S3+se	Maps with the average for the whole catchment, with scaling equations



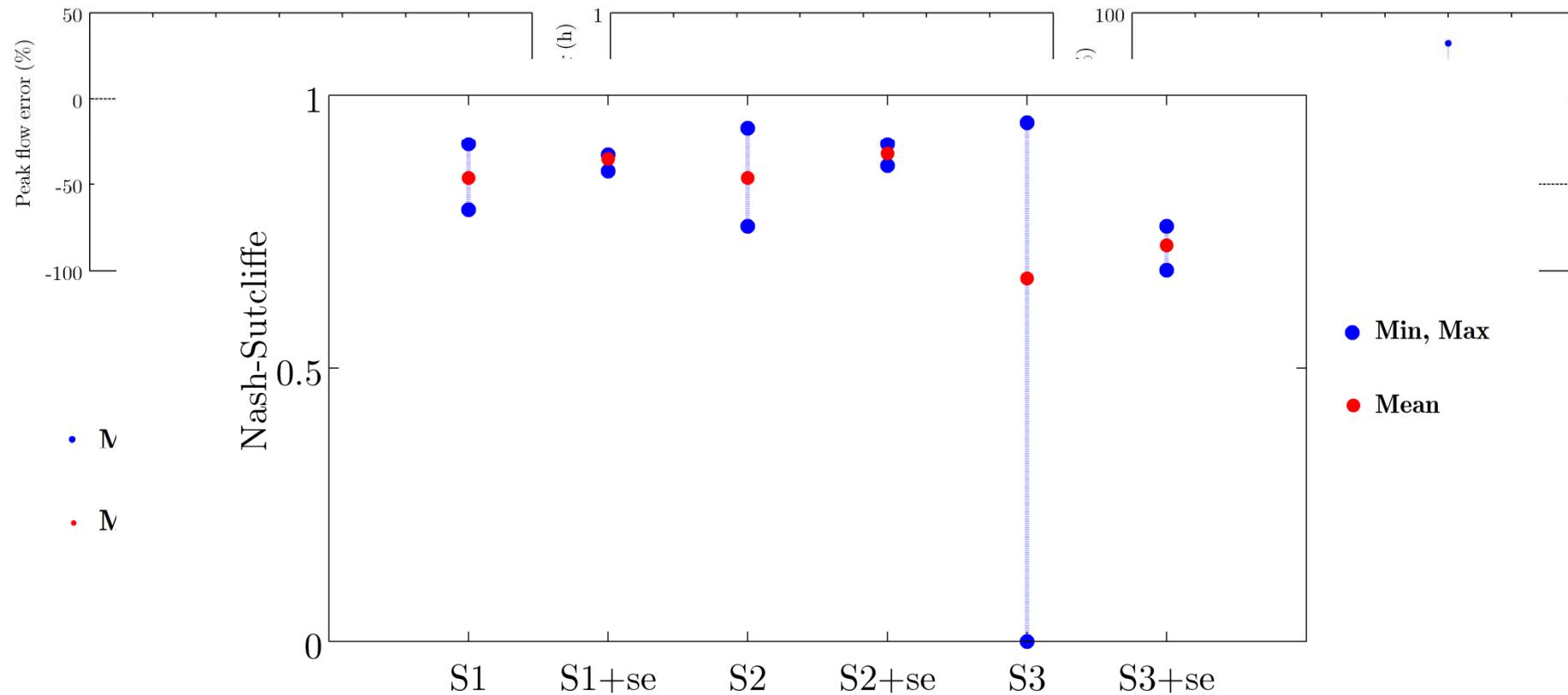


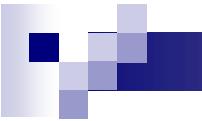
Results: spatial validation



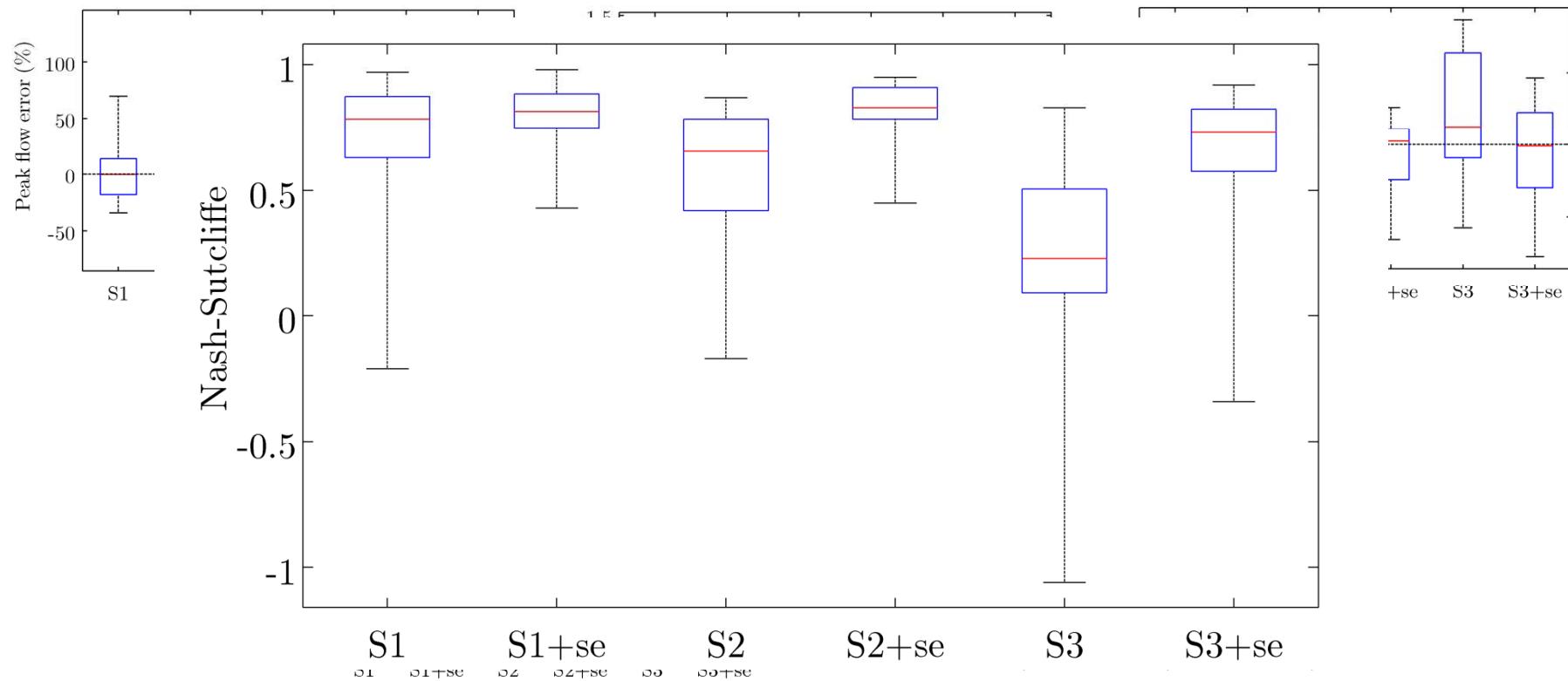


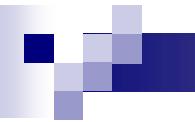
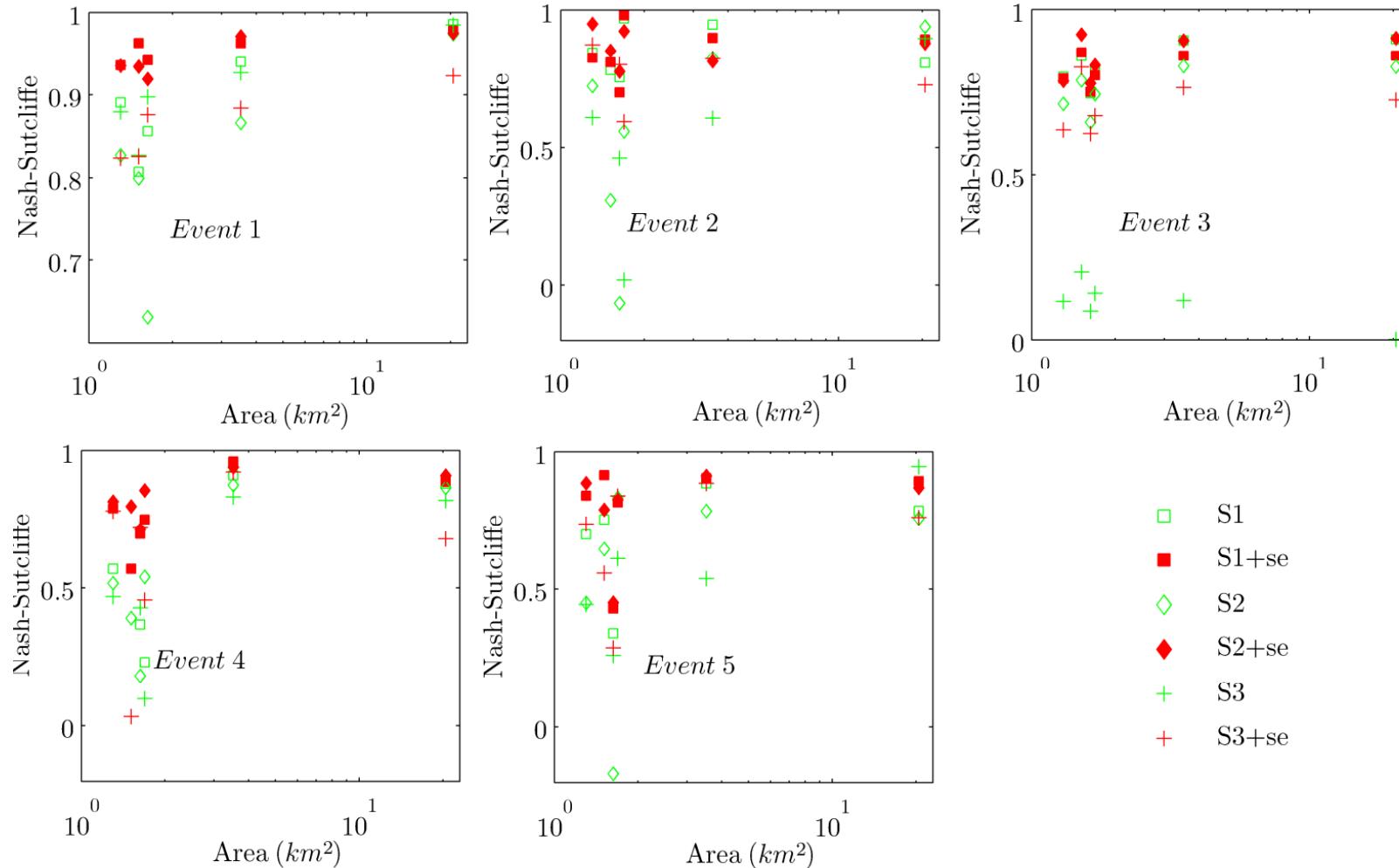
Results: temporal validation





Results: spatial-temporal validation





Conclusions

- Non-linearities + parameter heterogeneity and/or input variability => non-stationary effective parameters
- It is important the sub-grid variability representation in hydrological modeling.
- Particularly, the use of scaling equations implies:
 - For all information scenarios, a significant model performance improvement in validations at **internal flowgauges** and for the **smallest storm events**.
 - A better performance of **S1+se** and **S2+se** in comparison to the reference model **S1**.

Acknowledgements

- This work was supported by the Spanish research projects FLOOD-MED (CGL2088-06474-C02-02/BTE) and Consolider-Ingenio SCARCE (CSD2009-00065) and by the Programme ALßan, the European Union Programme of High Level Scholarships for Latin America, scholarship E07D402940DO.

Thanks for your attention